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Abstract—Test cases are useful for program comprehension.
Developers often understand dynamic behavior of systems by
running their test cases. As manual testing is expensive, automatic
testing has been extensively studied to reduce the cost. However,
without sufficient knowledge of the software under test, it is
difficult for automated testing techniques to create effective test
cases, especially for software that requires complex inputs.

In this paper, we propose to reuse existing test cases from
the libraries of software under test, to generate better test cases.
We have the observation that, when developers start to test the
target software, the test cases of its dependent libraries are often
available. Therefore, we propose to perform program analysis
on these artifacts to extract relevant code fragments to create
test sequences. We further seed these sequences to a random test
generator GRT to generate test cases for target software. The
preliminary experiments show that the technique significantly
improves the effectiveness of GRT. Our in-depth analysis reveals
that several dependency metrics are good indicators of the
potential benefits of applying our technique on specific programs
and their libraries.

Index Terms—Automated test generation, software reuse, pro-
gram analysis, random testing

I. INTRODUCTION

Dynamic information, which exhibits during program exe-
cutions, is useful for program comprehension. The cognitive
study on program behavior by analyzing execution traces is
a common approach to understanding the program [1]. As
an important way to directly convey software information to
human, visualization techniques represent program execution
traces graphically, which is helpful to understand program dy-
namic behaviors [2], especially for distributed applications that
contain multiple concurrent running processes and perform
asynchronous communications over the network [2]. Analysis
of execution traces is also heavily used by other program
comprehension techniques, such as architecture reconstruc-
tion [3], [4], behavioral pattern property mining [5], [6],
and feature location [7]. The effectiveness of these program
comprehension techniques directly rely on the accuracy and
comprehensiveness of the execution traces used.

In practice, test cases are often used to execute programs
such that the parts of interest of the programs are analyzed
for program comprehension. However, it is labor-intensive to
manually create and maintain high quality test cases. To be
useful for program comprehension, the test cases are expected
to create diverse program states and cover many code areas
of interest, and it is widely accepted that obtaining higher test
coverage is essential to cover more diverse program states.

Over the last decades, automated testing techniques are
extensively studied to abridge the gap between testing theory
and practical tool automation. Nowadays, there are a few
automated testing tools that can obtain reasonable code cov-
erage on real-world applications [8], [9], [10]. However, it is
still challenging for these tools to obtain high code cover-
age without using extra knowledge from the software under
test (SUT), especially on programs that require complicated
inputs or method invocation protocols, where understanding
such input structures and invocation protocols is essential.
Several studies [11], [12], [13] have shown that understanding
the SUT and reusing relevant artifacts (e. g. code samples from
public code bases) can provide useful information on how the
software is used, which is helpful to improve code coverage of
automatic testing. Unfortunately, these artifacts are not always
available when the SUT is being tested. For example, for a
newly developed program, which is to be thoroughly tested,
its test suites are still under development, and there is probably
no sample code in any public codebase.

In this paper, we propose a technique to mine extra knowl-
edge from the libraries, on which the SUT is dependent, to
improve the effectiveness of automatic testing on the SUT
itself. Our key observation is that comprehensive test suites
of the libraries are often available at the time when we start
to test the SUT, and the library test suites often create input
objects that are useful to generate test cases for the SUT. In
our technique, we first perform static analysis on the SUT to
discover all external types and identify those libraries used
by the SUT. For each library, we analyze the source code
of its test cases. More specifically, we perform a simplified
variant of static program slicing to extract relevant statement
sequences. Then, we transform the extracted sequences into
well-formed methods, so that they can be compiled and
executed. We integrate the generated methods into the testing
process of the random test generator GRT [14] to enable GRT
to create object states that are difficult to generate randomly.
The evaluation on five real-world applications shows that
our technique improves the average statement coverage and
branch coverage by 7.0% and 9.3%, respectively. Considering
GRT has been highly optimized [9], [15], the improvement
brought by the extra knowledge extracted from library tests is
noticeable. Our investigation also shows that simple metrics
of the dependences between the SUT and its libraries can be
main factors that influence the effectiveness of our technique.



II. RELATED WORK

Creating input objects with desirable states is essential to
increase code coverage and bug detection ability of automatic
testing techniques. However, it can be quite challenging when
testing programs that require complicated input objects. Ex-
tensive research has been done on automatic software testing
and several techniques show that reusing relevant knowledge
of SUT is helpful to improve testing code coverage.

MSeqGen [11] mines the frequently used method sequence
patterns from public codebases. It assumes that public code-
bases contain code usage samples of SUT, which often does
not apply to programs that are under development without
public releases. OCAT [12] and Palus [13] mine knowledge
from the existing tests of the SUT itself to improve automatic
testing. Palus first performs dynamic analysis on the provided
test cases to train method sequence models, and then uses
static analysis to identify method relevance based on field
accesses. Both results are used to guide run-time test gen-
eration. OCAT adopts object capture-and-replay techniques,
where object states are captured from running sampled test
cases by serialization technique [16], and then used as input
to support further testing. Both OCAT [12] and Palus [13]
assume that the test cases of the SUT already exist. However,
such test cases are often missing or incomplete during the
development phase or at the early stage of testing.

Differing from existing techniques, our technique is based
on the observation that test cases of libraries are often available
when we test the SUT. Unlike sequence patterns and input
objects extracted from SUT tests (and their executions), test
cases of libraries do not directly provide knowledge on how
the SUT is used. Our technique explores the possibility of
leveraging such indirect knowledge (contained in library tests)
to improve the effectiveness of automatic testing on the SUT.

III. APPROACH

Our technique consists of two main steps. In the first step,
we extract useful statement sequences from existing test cases
of libraries. Then, in the second step, we integrate the extracted
sequences into the process of a random test generator to
improve its effectiveness. Prior to these two steps, we analyze
the code of the SUT to identify all the libraries which the SUT
depends on and obtain the test cases of the libraries.

A. Extracting Statement Sequences from Library Tests

When we start testing an SUT, the libraries used by the
SUT are often well tested and their test suites are generally
available. These test suites contain test cases that cover various
kinds of usage scenarios of the libraries. The tested scenarios
probably include those used by the SUT, and they can create
library class objects which are more useful than randomly
generated ones. From library test cases, we extract statement
sequences in the test code so that library objects can be
generated by executing these sequences.

A main design decision of this step is to choose which
library objects to extract. In general, every state-changing
statement can result in one or more new object states. For

example, an assignment to a field changes the state of the
object containing that field and a method call probably changes
the state of the receiver object or its argument object(s). How-
ever, many objects cannot be explicitly obtained or accessible,
unless we instrument the test code to capture them at run-
time [12]. In this preliminary study, we perform static analysis
on library tests and focus on objects created by three kinds
of statements that are commonly useful for reusing: 1) for
each new statement, we try to obtain the object newly created;
2) for each method call whose return type is not void, we try
to obtain the returned object; 3) for each method call whose
return type is void, we try to obtain the receiver object if it
exists. We do not capture all the objects used as method call
arguments, to avoid extracting too many method sequences
that may be less useful for reusing. In the example below,
our technique captures all the three states of the object list,
where the first object is newly created and the other two are
from the method call on receiver objects.

List<Integer> list = new List<Integer>();
list.add(1);
list.add(2);

We analyze the test code to identify all relevant instances of
the three kinds of statements whose extracted object types are
compatible with a desired type in SUT. Every statement with
a new statement, object-returning method call, or method call
on a receiver object, is used as the last statement in a statement
sequence to be extracted. Starting from the last statement s,
we perform backward static program slicing to identify all the
statements noted as {s1, s2, ..., sn} that are relevant to s. Then,
we synthesize a new method, using the statement sequence
{s1, s2, ..., sn, s′} as the method body and the type of the
object extracted from s as the return type. The last statement
s′ is derived form of s. In cases that we need the method-
return object, we directly add a return keyword for s. For
example, if the original s is new Foo(1), then we create
s′ as return new Foo(1). In the case that we need the
receiver object of s, we create s′ by adding a return statement
after s, to return the receiver object. For example, we add the
statement return list at the end of the example above.

After generating the method, we add it into the enclosing
test class of the test method where the statement sequence is
extracted. In this way, we can avoid compilation errors, such
as those caused by accesses to private fields of the test class.

We use static program slicing for sequence extraction,
because we intend to conservatively include all statements that
are necessary to create the object at the last statement. It is
worth noting that we use a simplified variant of traditional
slicing algorithm, in that, our algorithm only considers data
dependences (ignoring control dependences). As reported in a
previous study [17], most unit test cases have straight-line code
and thus data dependences usually suffice to identify relevant
statements. More importantly, we tend to avoid complex con-
trol structures in the extracted statement sequences, because
long running sequences (e. g., infinite loops) usually result in
useless objects or run-time exceptions which are harmful to
automatic test generators.



B. Integration with Random Test Generator

After statement sequences are extracted from library tests
and transformed into executable methods, we integrate them
into the random test generator GRT, which is one of the state-
of-the-art automatic test generators [15], [9]. GRT shares the
common workflow of feedback-directed random testing [8]
and guides each step of test generation through orchestrated
program analysis. To test an SUT, GRT extracts all the target
methods under test (MUTs) from the SUT and iteratively
tests the MUTs by creating new test sequences and main-
taining an object pool that stores those successfully executed
sequences. In each testing iteration, GRT creates a new test
sequence seq by concatenating a randomly selected method
m(T1, T2, . . . , Tn) :Tr from the set of MUTs, and its cor-
responding inputs with types T1, T2, . . . , Tn from the object
pool, to test m. Upon successful execution, GRT stores the
sequence seq back to the object pool as inputs for further
iterations of test generation. GRT incrementally generates
more test sequences to test SUT until the time limit hits.

We enhance GRT to incorporate the statement sequences
extracted from library tests. Although the sequences are in
the form of executable methods, they may still rely on the
setUp() methods in the original library test classes to set up
the testing environment. Therefore, besides loading extracted
methods into GRT through reflection, we also identify their
dependent setUp() methods and concatenate them into new
sequences, to ensure that the corresponding setUp() method
is executed before each extracted method. Before the GRT
main test iteration starts, we run all these sequences inside
the GRT test execution framework to obtain the run-time
object states of library classes. We only keep object states with
successful execution that have no exceptions or errors. In this
way, we convert the extracted sequences into the object states
which can be used by GRT.

To obtain more relevant object states, we further perform
purity analysis and use methods that have side effects to mutate
the object states. To store the objects, we create a separate
object pool in GRT and store all these newly created objects
into the pool. At run-time, GRT randomly selects input objects
from the new object pool as well as its original object pool.
Using a separate pool generally avoids the interference of
newly introduced objects on the main test generation iterations
of GRT, as the pollution of the object pool (i. e., the pool is
full of weakly related objects) can cause additional overhead
of the testing procedure [13].

IV. PRELIMINARY EVALUATION

Using the enhanced version of GRT, we have performed a
set of experiments to investigate two research questions:

RQ1: Is the proposed technique useful to improve code cover-
age of automatic testing techniques?

RQ2: What factors can affect the effectiveness of our tech-
nique?

The experiments used five popular programs selected from
MVNRepoistory [18]. As shown in Table I, the programs

TABLE I
SUBJECT PROGRAMS USED IN THE STUDY.

Software (version) NCLOC #Class #Insn. #Bran.(*.class)
ASM-tree (5.1) 4,345 4,805 524 43
Apache Http-client (4.5.2) 19,772 53,158 4,913 463
Codehaus Wstx-asl (3.2.2) 36,621 80,238 12,086 248
Jackson-databind (2.7.3) 54,040 111,634 14,087 571
Joda-time (2.9.2) 28,624 65,327 6,580 246
Sum 143,402 310,357 38,190 1,571

vary in size, from 4K to 50K Non-commenting Lines of
Code (NLOC). Columns 3 to 5 give the number of classes, in-
structions, and branches measured by JaCoCo [19]. Depending
on their intended usage and design, the dependency of SUTs
on their libraries varies greatly as shown in Table II. Column 3
shows the number of dependencies of SUT on its libraries. We
count a dependency if an SUT class references a library class.
Columns 4 and 5 measure the number of unique SUT classes
using library classes, and the number of library classes used
by SUT, respectively. For instance, in ASM-tree, there are 72
dependencies among SUT classes and libraries. Among the 43
SUT classes, 36 of them use 10 library classes collectively.

In running GRT and its enhanced version, we allocated
a global time budget of 3,000 seconds for each subject. To
counteract the non-deterministic behavior of GRT, we ran each
setting five times. All experiments were run on a computer
cluster. Each cluster node ran a GNU/Linux system running
Linux kernel 3.5.0 on a 16-core 1.4 GHz AMD 64-bit CPU
with 48 GB of RAM, with Oracle’s Java VM (JVM) version
1.7.0 65, using up to 4 GB for the JVM.

A. Code Coverage

Table II lists the averaged code coverage results. Columns
8 and 11 are the instruction and branch coverage of the
original GRT. Columns 9 and 12 are the instruction and branch
coverage of the proposed technique. Columns 10 and 13 are
the relative improvement of the proposed technique compared
with GRT. The data shows that overall our technique has
positive effects, improving code coverage of GRT on four
out of the five subjects (except Joda-time) statistically sig-
nificantly (calculated by Mann-Whitney U Test, at p < 0.05
level) with coverage improvement from 2.4% to 24.3%.

On Joda-time, we cannot observe improvement, which is
consistent with the data of sequence extraction from its library
tests. From column 5 of Table II, we can see that Joda-time
only uses two of its library classes. Columns 6 and 7 show
that our technique does not extract any statement sequences
with these two types. Therefore, the technique has no effects
on GRT in testing Joda-time, and the negligible difference of
coverage is caused by random factors.

In summary, our answer to RQ1 is that, in general, our tech-
nique is effective to improve the code coverage of automatic
testing tools. Its effectiveness may vary with different subjects.
In particular, it is ineffective if the library tests do not provide
useful objects.



TABLE II
DEPENDENCY METRICS OF STUDIED SUBJECTS AND EVALUATION RESULTS.

Software #Class #Depend. #Uniq. SUT # Uniq. Lib Mined Seq. Instr. Coverage (%) Branch Coverage (%)
SUT and Lib Referencer Referencee Num. #Types GRT Prop. Impr. GRT Prop. Impr.

ASM-tree 43 72 36 10 16 6 66.2 67.8 2.4 57.3 59.0 3.0
Apache Http-client 463 1,602 427 132 486 58 65.0 71.2 9.5 53.3 58.9 10.5
Codehaus Wstx-asl 248 359 123 53 305 33 54.2 63.3 16.8 41.6 51.7 24.3
Jackson-databind 571 1,072 399 105 554 21 58.0 61.7 6.4 43.1 46.6 8.1
Joda-time 246 37 24 2 0 0 86.7 86.8 0.1 76.4 76.7 0.4
Sum (Avg. for Cov.) 1,571 3,142 1,009 302 1,361 118 66.0 70.2 7.0 54.3 58.6 9.3

B. Discussion on Dependency Metrics

From Table II, we can see that the number of extracted
sequences and their types from library tests (columns 6 and 7)
can be a good indicator of the effectiveness of our technique.
The more sequences with more required types we can extract
from library tests, it is more probable that we can improve
the automatic testing on SUT. The number of unique SUT
referencers (column 4) is another factor to show how the
SUT relies on its libraries. Given the same set of extracted
sequences, the more SUT classes depending on libraries, the
more probable reusing library tests would help. Moreover, the
number of unique library referencees (column 5) describes
how many unique library classes are used by SUT. Statement
sequences in library tests that can generate these types are
actually useful to the testing of SUT. Thus, if the test cases
of libraries test these types more extensively, our technique is
more likely to improve the code coverage.

In addition to metrics shown in Table II, the effectiveness
of our technique could be affected by several other factors.
On the SUT side, a potentially influential factor is whether or
not the code branches that are difficult to cover by automatic
tools are related to library objects. On the library side, the
quality of library tests can be crucial. Since it is common
that the development of libraries and their tests is oblivious
to particular SUTs that may depend on them, we expect high
quality library tests, which test most usage scenarios and have
high code coverage, to be more useful to our technique.

V. CONCLUSION

Many program comprehension techniques perform analysis
on execution traces to obtain cognitive information. Improving
automatic testing to cover diverse program states can be very
useful for program comprehension. This paper explores the
usefulness of reusing library tests to improve the automatic
testing. The results of our study on five real-world programs
are positive and show that the dependency metrics of SUT
and its libraries can be useful to indicate the effectiveness of
our technique. Our future work includes (1) applying our tech-
nique to automatic testing tools based on symbolic execution,
(2) extending our technique to other testing platforms [20] .
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