On Assessing the Complexity of Software Architectures

Jianjun Zhao
Department of Computer Science and Engineering
Fukuoka Institute of Technology
3-10-1 Wajiro-Higashi, Higashi-ku, Fukuoka 811-0214, Japan
zhao@cs.fit.ac.jp

Abstract

This paper proposes some new architectural metrics which
are appropriate for evaluating the architectural attributes
of a software system. The main feature of our approach
is to measure the complexity of a software architecture by
capturing various types of architectural dependences in the
architecture that can be derived from analyzing its formal
architectural specification.

keywords: Architectural description lanaguage, Architec-
tural metric, Dependence analysis, Software architecture

1 Introduction

Software metrics have many applications in software engi-
neering activities including software analysis, testing, debug-
ging, maintenance, and project management. In the past
two decades numerous software metrics have been proposed
for measuring the complexity of software [4, 25]. These met-
rics can be divided into two categories according to the de-
sign levels of software': code metrics which aim at measuring
the complexity of a single program module at code design
level [3, 5, 6, 13], and architectural metrics which aim at
measuring the complexity of components and their inter-
connections in software systems at architectural design level
[7, 10, 14, 22].

Most work on software metrics focused on code metrics
which are derived solely from source code of a program, and
the study of architectural metrics has received little atten-
tion. However, architectural measurement can be regarded
as a desirable addition to code metrics because it allows you
to capture important aspects of a system’s architecture ear-
lier in the system life cycle so you can take corrective actions
earlier [16]. This may offer greater potential for return on
investment in order to make large gains in productivity and
quality since error detection and repair is more costly if we
can not catch errors in the early stage of system design.

1 There are usually two levels of design for software, architectural
level design where involves overall association of system capability
with components, and code level design where involves algorithms
and data structures [16].

But, why has the study of architectural metrics received
little attention in comparison with code metrics 7 One im-
portant reason is while the code level for software systems
is now well understood, the architectural level is currently
understood mostly at the level of intuition, anecdote, and
folklore [19]. Existing representations that a system archi-
tect uses to represent the architecture of a software system
are usually informal and ad hoc, and therefore can not cap-
ture enough useful information of the system’s architecture.
Moreover, with such an informal and ad hoc manner, it is
difficult to develop analysis tools to automatically support
the evaluation and comparison of existing architectural met-
rics. As a result, in order to make architectural metrics more
widely accepted and used in software system design, formal
representation of system architectures is strongly needed.

Recently, as the size and complexity of software systems
increases, the design and specification of the overall software
architecture of a system is receiving increasingly attention.
The software architecture of a system defines its high-level
structure, exposing its gross organization as a collection of
interacting components. A well-defined architecture allows
an engineer to reason about system properties at a high
level of abstraction [19]. Architecture description languages
(ADLs) are formal languages that can be used to represent
the architecture of a software system. They focus on the
high-level structure of the overall application rather than
the implementation details of any specific source module.
In order to support formal representation and reasoning of
software architecture, a number of ADLs such as WRIGHT
[1], Rapide [9], and UniCon [18] have been proposed. By
using an ADL, a system architect can formally represent
various general attributes of a software system’s architec-
ture. This provides researchers with a promising solution to
solve the problems existing in recent architectural metrics.
First, a sound basis for software architecture promises one
to define new architectural metrics, or refine existing archi-
tectural metrics in a more formal way in comparing with
existing informal structure charts based architectural met-
rics. Second, formal language support for software architec-
ture provides a useful platform on which automated support
tools for architectural metrics can be developed and formal
evaluation and comparison of existing architectural metrics
can be done.

In this paper, we propose some new architectural met-
rics for software architecture. Our metrics are appropriate
for evaluating the architectural attributes of a software sys-
tem. The main feature of our approach is to measure the
complexity of a software architecture by capturing various
types of architectural dependences in the architecture that

can be derived from analyzing its formal architectural spec-
ification. To formally define these metrics, we present a
dependence-based representation named Architectural De-
pendence Graph (ADQG) to explicitly represent various ar-
chitectural dependences in a software architecture.

The rest of the paper is organized as follows. Section 2
presents three types of architectural dependences in a soft-
ware architecture and the architectural dependence graph.
Section 3 defines some dependence-based metrics for soft-
ware architecture. Section 4 discusses some related work.
Concluding remarks are given in Section 5.

2 A Dependence Model for Software Architecture

When we intend to measure some attributes of an entity, we
must build some model for the entity such that the attributes
can be explicitly described in the model. In this section,
we present a dependence model for software architecture to
capture attributes concerning about information flow in a
software architecture.

2.1 Program Dependences

Program dependences are dependence relationships holding
between program statements (variables) in a program that
are implicitly determined by control flow and data flow in
the program. Usually, there are two types of program de-
pendences in a program, that is, control dependences rep-
resenting the control conditions on which the execution of
a statement or expression depends and data dependences
representing the flow of data between statements or expres-
sions. The task to determine a program’s dependences is
called program dependence analysis.

Program dependence analysis has been primarily stud-
ied in the context of conventional programming languages.
In such languages, it is typically performed using a program
dependence graph [3, 8, 15]. Program dependence analy-
sis, though originally proposed for complier optimization,
has also many applications in software engineering activities
such as program slicing, understanding, debugging, testing,
maintenance and complexity measurement [8, 15, 17]. As
a result, it seems reasonable to apply program dependence
analysis technique to software architectures to support soft-
ware architecture development activities [21, 23].

2.2 Architectural Dependences

Roughly speaking, architectural dependences are dependence
relationships holding between components (ports) in a soft-
ware architecture, and are implicitly determined by infor-
mation flow in the architecture. Unlike program depen-
dences, which are defined as dependence relationships be-
tween statements (variables) in a program, architectural de-
pendences are defined as dependence relationships between
components (ports) in a software architecture. To perform
dependence analysis on software architectures, it is impor-
tant to identify all primary architectural dependence rela-
tionships between components (ports) in the architectures.
However, such a work is quite difficult because comparing
with program dependence analysis, the dependence relation-
ships between components (ports) in a software architecture
can be more complex and broad. In this section we intro-
duce three types of primary architectural dependences be-
tween components (ports) in a software architecture. The
classification of architectural dependence types based on the

results of coordination theory[12] . The types of primary ar-
chitectural dependences are not limited to these three ones,
rather, new types of primary architectural dependences must
be further exploited in order to identify all types of primary
architectural dependences in a software architecture.

Shared Dependences

Sharing dependences represent dependence relationships
among consumers who use the same resource or producers
who produce for the same consumers. For example, for two
components u and v, if w and v refer to the same global data,
then there exists a shared dependence relationship between
w and v.

Flow Dependences

Flow dependences represent dependence relationships be-
tween producers and consumers of resources. For exam-
ple, for two components « and v, if ¥ must complete before
control flows into v (prerequisite), or if « communicate v by
parameters, then there exists a flow dependence relationship
between u and wv.

Constrained Dependences

Constrained dependences represent constraints on the rela-
tive flow of control among a set of activities. For example,
for two components u and v, v and v can not execute at
the same time (mutual exclusion), then there exists a con-
strained dependence relationship between « and v.

2.3 Architectural Dependence Graph

We present an arc-classified digraph named Architectural
Dependence Graph (ADQG) for explicitly representing the
three types of primary architectural dependences in a soft-
ware architecture. Here we assume that the interface of
each component in a software architecture is defined by a
set of ports. The ADG of a software architecture consists
of vertices and arcs to connect these vertices. There is a
component vertex for each component in the architecture,
and each component vertex consists of a set of port ver-
tices each representing a port of the component. There is
an architectural dependence arc between two port vertices
of components if there exists a shared, flow, or constrained
dependence relationship between the ports.

Architectural dependence information can be inferred
based on formal architectural specifications of a software
architecture. For example, based on a WRIGHT architec-
tural specification we can infer which ports of a component
are input ports and which are output ports in the speci-
fication. Moreover, the direction in which the information
transfers between ports can also be inferred based on the for-
mal specification. Such kinds of information can be used to
construct the architectural dependence graph for a software
architecture to formally define dependence-based architec-
tural metrics.

3 Architectural Metrics

As we mentioned in Section 2, architectural dependences are
dependence relationships holding between components in a
software architecture that are implicitly determined by in-
formation flow in the architecture. Therefore, architectural
dependences can be regarded as one of intrinsic attributes

’In [12], Malone and Crowston defines coordination as the process
of managing dependences among activities.

of a software architecture and it is reasonable to regard ar-
chitectural dependences as one of objects for measuring the
architectural complexity of a software architecture.

In this section, we define a set of new architectural met-
rics in terms of architectural dependences to measure the
complexity of a software architecture from various different
viewpoints. Once the ADG of a software architecture is con-
structed, the metrics can be computed easily based on the
graph. The following notations are used for defining these
metrics:

|A|: the cardinality of set A.
RT: the transitive closure of binary relation R.

0[1]=0(R): the selection of binary relation R such that
op)=o () = {(v1,02)|(v],02) € R and vl = v}.

When we constructed the ADG for a software architec-
ture, the most general metric can be defined in terms of
ADG. The following metric is defined for measuring the to-
tal complexity of a software architecture:

e Let Dy be the set of all dependences arcsin the ADG of
a software architecture, then the total complexity M7
of the architecture can be measured by My = |D;|.

Note that the above metric was defined under the sit-
uation that we treat a component as an unit to construct
the ADG of a software architecture. However, in fact, each
component in the architecture may generally correspond to
a single application module which can be measured by usual
code metrics at code level. So there is a need to combine
the total complexity at architectural design level with inter-
nal component complexity at code design level to obtain an
overall complexity metric.

e Let M1 be the total complexity and M, ..., My be the
individual component complexities. Then the global
complexity Mg of a software architecture can be mea-

sured by: Mg = M1 + Zle M;.

The above metrics only concerned with the direct archi-
tectural dependences in a software architecture, but did not
take indirect architectural dependences into account. As a
result, they only capture the sum of some local complexity,
rather than the total complexity of the architecture. In fact,
a component in a software architecture may indirectly de-
pend on other components in the architecture. Therefore, to
measure the total complexity of a software architecture, we
should define a metric by taking either direct or indirect ar-
chitectural dependences into account. This can be obtained
by calculating the transitive closure |D}| of the |D.|, we
have: My = |D{|. Similarly, if we also consider the indirect
dependences at architectural level and each of application
modules at code level, we can obtain more detailed global
complexity M{ of the system: ML = M5 + Zle M.

In maintenance phases, when we have to modify some
component in a software architecture, usually, we intend to
know information about how the modified component in-
tersect with other components. This kind of information
is very useful because it can tell us if the modified compo-
nent is a special point that connects with its environment
more closely than other components. If so, that means it is
difficult to make changes to the component due to a large
number of potential effects on other components. We call
such a component the “most easily affected component of
the architecture.” To capture such attribute, we can define
following metrics.

o Let Dy be the set of all dependences arcsin the ADG of
a software architecture, and o7y)=,(D¢) be the number
of ports of components on which a port v of a com-
ponent is directly dependent. The complexity Ms of
the most easily affected component in the architecture
can be measured by Ms = maz{|op)=,(D:)| | v is a

vertex of the ADG }.

Similarly, if we also considered indirect architectural de-
pendences in a software architecture, we can obtain a more
detailed metric: M5 = maz{|op)=o(DF)| | v is a vertex of
the ADG }.

As we observed, all the architectural metrics defined above
are absolute metrics. In general, the larger is a architectural
metric of a software architecture, the more complex is the
software architecture. Moreover, some relative architectural
metrics should also by considered since they can measure
the complexity of a software architecture from some differ-
ent viewpoints.

4 Related Work

Although much work has been studied for code metrics at
implementation code level, the study of architectural met-
rics has not received as much as attention in comparing
with code metrics. Among existing architectural metrics,
there are two famous architectural metrics that have been
proposed by Yin and Winchester which is derived from a
system’s structured design chart, and by Henry and Kafura
which is derived from a system’s information flow. We com-
pare their approaches with ours here.

Yin and Winchester have defined some architectural met-
rics based on analysis of a system’s design structure chart
[22]. They focused on the interface between the major levels
in a large, hierarchically structure. However, the fundamen-
tal problem for Yin and Winchester’s work is that their met-
rics were defined based on informal system’s design structure
charts which can only capture the flow of information across
level boundaries. In contrast, our metrics are defined based
on various types of architectural dependences in a software
architecture that can be derived from analyzing its formal
architectural specification, and therefore, can measure the
architectural complexity of the system more well.

Henry and Kafura proposed some architectural metrics
based on information flow of a system. Their metrics are
probably the most cited architectural metrics that have been
developed. The idea behind these metrics is that complex-
ity is measured in terms of information flow, and that more
complex modules in a system are those through which large
amounts of information flow. Their approach is much more
detailed compared with Yin and Winchester’s work because
it observes all information flow rather than just flow across
level boundaries. However, there are two fundamental prob-
lems in information flow metrics. First, although Henry and
Kafura stated that their approach can be completely auto-
mated, this is not often the case. Recent evaluations showed
that due to the ambiguous definitions of some of the met-
rics, it is difficult to give an evaluation of the metrics. This
makes it difficulty to develop automated support tools for
the approach [11, 20]. Second, information flow metrics were
also defined based on some informal structure charts which
usually poorly capture the attributes of a system’s architec-
ture. In contrast, our metrics which are defined in terms
of various types of architectural dependences in a software
architecture that can be derived from analyzing its formal
architectural specification, and therefore can capture more

intrinsic and deeper attributes of a system’s architecture.
Moreover, due to the synthetic nature of some information
flow metrics (i.e. the fact that they are obtained by combin-
ing the values of a number of other counts), recent studies
showed that this may conceal underlying effects and lead to
incorrect diagnoses of the status of either the system as a
whole or of individual components [11]. Our metrics, in con-
trast, are defined based on primitive counts (of dependence
arcs in the ADQ), rather than synthetics, and therefore no
such a problem occurred.

5 Concluding Remarks

We proposed some new architectural metrics which are ap-
propriate for evaluating the architectural attributes of a soft-
ware system. The main feature of our approach is to mea-
sure the complexity of a software architecture by capturing
various types of architectural dependences in the architec-
ture that can be derived from analyzing its formal architec-
tural specification. In order to formally define these metrics,
we presented a dependence-based representation named Ar-
chitectural Dependence Graph (ADG) to explicitly represent
these architectural dependences in the architecture.

The work presented here is primary, and there is still a
lot of work that remains to be done. For example, in addi-
tion to defining metrics based on architectural dependences,
similar to [2] which they defined some metrics based on pro-
gram slices to evaluate functional cohesion of a program, we
can also define metrics to evaluate the functional cohesion
of a software architecture based on architectural slices that
can be computed by a new slicing technique called architec-
tural slicing [21, 23, 24]. Moreover, we can also define some
architectural metrics by simply counting the number of ele-
ments in a formal architectural specification. For example,
we can define metrics by counting the number of compo-
nents, connections between components, and even the num-
ber of lines in a formal architectural specification. On the
other hand, it is important to develop static analysis tools
to automatically support the collection and evaluation of
the architectural metrics proposed in this paper. Now we
are implementing an architectural dependence analysis tool
for WRIGHT architectural specifications and an architectural
metric collector based on it. The next step for us is to per-
form some experiments and collect data for evaluation. We
hope a primary evaluation of these metrics will be available
soon.

References

[1] R. Allen, “A Formal Approach to Software Architecture,”
PhD thesis, Department of Computer Science, Carnegie Mel-
lon University, 1997.

[2] J. M. Bieman and L. M. Ott, “Measuring Functional Cohe-
sion,” IEEE Transaction on Software Engineering, Vol.20,
No.8, pp.644-657, 1994.

[3] J. Cheng, “Process Dependence Net of Distributed Programs
and Its Applications in Development of Distributed Sys-
tems,” Proc. of the COMPSAC’93, pp.231-240, 1993.

[4] N.E.Fenton and S. L. Pfleeger, “Software Metrics: A Rigor-
ous and Practical Approach,” Second Edition, International
Thomson Computer Press, 1997.

[5] M. Halstead, “Elements of Software Science,” Elsevier,
North Holland, 1977.

[6] W. Harrison and C. Cook, “A Micro/Macro Measure of Soft-
ware Complexity,” Journal of System and Software, Vol.7,
No.2, pp.213-219, 1987.

[7] S. Henry and D. Kafura, “Software Structure Measures
Based on Information Flow,” IEEE Transactions on Soft-
ware Engineering, Vol.7, No.5, pp.510-518, 1981.

[8] S.Horwitz, T. Reps, and D. Binkley, “Interprocedural Slicing
Using Dependence Graphs,” ACM Transaction on Program-
ming Language and System, Vol.12, No.1, pp.26-60, 1990.

[9] D. C. Luckham, L. M. Augustin, J. J. Kenney, J. Veera,
D. Bryan, and W. Mann, “Specification Analysis of System
Architecture Using Rapide,” IEEE Transaction on Software
Engineering, Vol.21, No.4, pp.336-355, April 1995.

[10] R. Kazman and M. Burth, “Assessing Architectural Com-
plexity,” Proceedings of the 2nd Euromicro Conference on
Software Maintenance and Reengineering, pp.104-112, Flo-
rence, Italy, March 1998.

[11] B. A. Kitchenham, L. M. Pickard, and S. J. Linkman, “An
Evaluation of Some Design Measures,” Software Engineering
Journal, pp.50-58, January 1990.

[12] T. W. Malone and K. Crowston, “The Interdisciplinary
Study of Coordination,” ACM Computing Surveys, Vol.26,
No.1, pp.87-119, 1994.

[13] T. J. McCabe, “A Software Complexity Measure,” IEEE
Transaction on Software Engineering, Vol.2, No.4, pp.308-
320, 1976.

[14] T. J. McCabe and C. W. Butler, “Design Complexity
Measurement and Testing,” Communications of the ACM,
Vol.32, No.12, pp.1415-1425, 1989.

[15] K. J. Ottenstein and L. M. Ottenstein, “The Program De-
pendence Graph in a software Development Environment,”
ACM Software Engineering Notes, Vol.9, No.3, pp.177-184,
1984.

[16] H. D. Rombach, “Design Measurement: Some Lessons
Learned,” IEEE Software, pp.17-25, March 1990.

[17] A.Podgurski and L. A. Clarke, “A Formal Model of Program
Dependences and its Implications for Software Testing, De-
bugging, and Maintenance,” IEEE Transaction on Software
Engineering, Vol.16, No.9, pp.965-979, September 1990.

[18] M. Shaw, R. DeLine, D. V. Klein, T. L. Ross, D. M. Young,
and G. Zelesnik, “Abstractions for Software Architecture and
Tools to Support Them,” IEEE Transaction on Software
Engineering, Vol.21, No.4, pp.314-335, April 1995.

[19] M. Shaw and D. Garlan, “Software Architecture: Perspective
on an Emerging Discipline,” Prentice Hall, 1996.

[20] M. Shepperd, “Design Metrics: An Empirical Analysis,”
Software Engineering Journal, pp.3-10, January 1990.

[21] J. A. Stafford, D. J. Richardson, and A. L. Wolf, “Aladdin: A
Tool for Architecture-level Dependence Analysis of Software
Systems,” Technical Report CU-CS-858-98, Department of
Computer Science, University of Colorado, April 1998.

[22] B. H. Yin and J. W. Winchester, “The Establishment and
Use of Measures to Evaluate the Quality of Software De-
signs,” Proceedings of the Software Quality and Assurance
Workshop, pp.45-52, 1978.

[23] J. Zhao, “Using Dependence Analysis to Support Software
Architecture Understanding,” in M. Li (Ed.), New Technolo-
gies on Computer Software, pp.135-142, International Aca-
demic Publishers, September 1997.

[24] J. Zhao, “ Applying Slicing Technique to Software Archi-
tectures,” Proceedings of the Fourth IEEE International
Conference on Engincering of Complex Computer Systems,
pp-87-98, Monterey, USA, August 1998.

[25] H.Zuse, “Software Complewity: Measures and Methods,”
Walter de Gruyter, 1990.

